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ABSTRACT

An approximate and simple method for predicting the field profile in a curved dielectric waveguide is

describhed.
verificiation of the theoretical results is included.
Introduction

Recently, dielectric waveguides have seen
increasing use as transmission lines for millimeter-
wave integrated circuits. These lines are often
curved to satisfy the small-size requirements of the
system packaging. Also, many of the dielectric
devices, such as ring resonators and couplers, are
comprised of curved waveguides. Therefore, it is
necessary to have a good understanding of the be-
havior of the field in the neighborhood of the bend
in order to accurately predict the coupling and
radiation characteristics. General analytical

approachesh2 are currently available for analyzing
curved waveguides. However, these approaches are
typically rather involved in the mathematical sense
and it 1is often useful to seek simple solutions
which represent the field behavior in a curved
dielectric waveguide in an approximate but accurate
manner. The construction of this approximate solu-
tion proceeds as follows. We represent the fields
in the inner region of the dielectric waveguide bend
in terms of the solutions of the wave equation in an

inhomogeneous 1inear mediun.3 In the outer region
of the waveguide, the decay coefficient is modified
from that of the straight guide because of the
curvature. The validity of these approximate
expressions is verified by experiments carried out
at X-band.

Propagation Characteristics of a
Curved Dielectric Waveguide

Consider a curved dielectric waveguide with a
homogeneous refractive index ny surrounded by air,
as shown in Figure 1. The bending of the guide is
Tikely to Tead to a distortion of the phase fronts
of the wave being guided along the curved guide.
The radial dependent of the guided wavelength in the

curved structure can be approximated by4

Ar) = ag (M
R
r=R+x (2)
z = RE
w = RIn{r/R)
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Figure 1.
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It is shown that the field can be approximated inside the dielectric guide by the Airy function of
the first kind and that the field decay coefficient assumes an integral form outside the guide.

Experimental

where A, is the wavelength in the straight guide,
and R is the mean radius of the curved guide.

Next, we transform the homogeneous curved guide

into an inhomogeneous straight one via conformal
mapping into the (w,z) plane as follows
w = RIn(E
(R)
(3)
z =R
w and z are the transverse and longitudinal coor-

dinates of the linear structure, respectively.

In the transformed (w,z) plane, the Tongitu-
dinal wave number is constant throughout the cross-
section of the straight dielectric guide,5 whereas
in the original curved structure, the propagation
constant varies according to Equation (1). 1In the
transformed plane, the equivalent refractive index

n(w) can be expressed3 as

Mm=n]e§xm(1+% (4)
In view of this, the refractive indices at the inner
and outer edges of the curved waveguide become

n {1 - %E) and m(1 + %E), respectively, in the

straight guide. With the increase of the refrative
index as a function of r, the maximum in the energy
distribution shifts toward the outer edge of the
curved guide (see Figure 2). As expected, the
degree of shift depends on the bending radius R.
The wave equation for the electric field E in the
dielectric waveguide becomes

(5)

where ko is the free-space wave number, and w(x) is
the transverse coordinate in the (w,z) plane.

AE(W,Y,2) + n2(W)KBE(w,y,2) = O
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Curved dielectric waveguide and its transformation.



For relatively 1large radii, the w-variation
component of the field in the curved guide can be
expressed as:
2e,k2
d2 2 2 2 1%0 -
md}(w) + (e1kg - ky - kg +Tw) viw) =0 (6)

where ky and kg are the transverse and axial propa-

gation constants of the straight guide, and ey = n%.
Introducing a new variable given by
2 2 2 k2 2e.k2
t = (kg - ereko)( ; 9)-2/3 . (19 13, (7

the wave equation (6) may be rewritten as
(8)

The Tinearly independent solutions for this
equation are given by

Ai(z), Bi(z)
Ai(z), Ai(ze*2ni/3)

p"(2) - cwl(z) =0

(9)

and

The choice for the combination of these solutions
for representing the field in a curved dielectric
waveguide is not obvious. Given that the field
maximum in a curved dielectric waveguide always
shifts toward the outer edge and knowing the be-

havior of Airy functions6, the solution can be
approximately represented as

¥(z) = CAi(c)

where C is an arbitrary normalizing constant, and
z is related to the original transverse parameter x
by Equations (3) and (7).

(10)

Using this expression, the field amplitude in
the curved dielectric waveguide was plotted as a
function of the transverse position x in the guide
and compared with the experimental data as shown in
Figure 3. It should be pointed out that the
straight guide was designed such that it would prop-
agate only the fundamental mode. Of course, a cer-
tain amount of mode conversion always takes place at
the bend. However, the experimental results did not
show the presence of these higher-order modes, at
Teast not to a great extent.

n(w)
n=n, (I+ w/R)
0T
wWt—m/m™y - T
1 1 1
~-a/2 0 a/2 w
Figure 2. Transverse index profile in

the (w,z) plane.
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Outer-Region Fields in a Curved Dielectric Waveguide

From Equation (1), the axial wave number in a
curved waveguide as a function of r is given by

kp(r) = kg(R)

Using the generalized effective dielectric
constant method, the dispersion relation for the
field decay coefficient outside the curved guide is
given by

2
) = -d =g R

(1)

2 - K

(12)
This equation suggests that the field decay
coefficient in a curved dielectric guide is no
Tonger a constant but varies as a function of the
distance away from the guide. On the outer side of
the bend, ¢ is real and positive in the region close
to the dielectric guide, which implies that the
field is still guided. At distances sufficiently
far from the guide, the field decay coefficient
becomes imaginary and this corresponds to a travel~
ing wave in the radial direction. The critical
distance at which this transform occurs is xcp. On
the outer side of the guide, in the region where
is real, the radial variation of the field can be
expressed as

2 2 A
wxcr_(x) Y exp{-fa/z (kg (E%;)z - ko) 1/2 di}{n)

where x is the distance from the mean radius. The
minus sign on x¢cp indicates that the field is only

valid in the region where x < x.p.

Far from the guide, the field is given by

g - Oer) HD) (koR +30)  (14)

Y X) =
Xcr+( )

where v = kgR (15)

The choice of the Hankel function of the second

kind is dictated by the requirement that the field

must become an outward traveling wave for x >> Xcr-4

The critical distance x., is defined as the distance
X where

¥ kepm (%) = eyt (%) (16)

For sufficiently large R,

. k
Xer = R (Iff - 1) a7)

The field amplitudes derived from Equations
(13) and (14) were plotted and compared with the
experimental results, as shown in Figure 4.

On the inner side of the bend, the field decay
coafficiant ie always real indicating that the field
must decay in the direction of decreasing r. With
¢ given in (12), the field profile in the inner
side of the bend becomes

" N X o R.,2 .2y 1/2
100 ~ e[ 08 27 id) ¥ ) am)
2

where x is negative in the region r <R, The
experimental and theoretical results for the
field amplitude 1in the inner side of the curved

dielectric waveguide are plotted in Figure 5.
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Conclusions

In this paper we have presented an approxi-
mate analytical method for predicting the field
profile in a curved dielectric waveguide. Inside
the dielectric waveguide, the field can be expressed
as an Airy function. On the outer side of the
guide, the field decay coefficient, which assumes an
integral form near the guide, is expressed in terms
of the Hankel function of the second kind at distan-
ces far away from the guide. On the inner side of
the guide, the field decay coefficient can also be
expressed in terms of an integral. Experimental
verification of the field behavior predicted by the
approximate theoretical formulas is included,
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